Insulin post-transcriptionally modulates Bmal1 protein to affect the hepatic circadian clock
نویسندگان
چکیده
Although food availability is a potent synchronizer of the peripheral circadian clock in mammals, the underlying mechanisms are unclear. Here, we show that hepatic Bmal1, a core transcription activator of the molecular clock, is post-transcriptionally regulated by signals from insulin, an important hormone that is temporally controlled by feeding. Insulin promotes postprandial Akt-mediated Ser42-phosphorylation of Bmal1 to induce its dissociation from DNA, interaction with 14-3-3 protein and subsequently nuclear exclusion, which results in the suppression of Bmal1 transcriptional activity. Inverted feeding cycles not only shift the phase of daily insulin oscillation, but also elevate the amplitude due to food overconsumption. This enhanced and reversed insulin signalling initiates the reset of clock gene rhythms by altering Bmal1 nuclear accumulation in mouse liver. These results reveal the molecular mechanism of insulin signalling in regulating peripheral circadian rhythms.
منابع مشابه
BMAL1 and CLOCK, Two Essential Components of the Circadian Clock, Are Involved in Glucose Homeostasis
Circadian timing is generated through a unique series of autoregulatory interactions termed the molecular clock. Behavioral rhythms subject to the molecular clock are well characterized. We demonstrate a role for Bmal1 and Clock in the regulation of glucose homeostasis. Inactivation of the known clock components Bmal1 (Mop3) and Clock suppress the diurnal variation in glucose and triglycerides....
متن کاملCalorie restriction regulates circadian clock gene expression through BMAL1 dependent and independent mechanisms
Feeding behavior, metabolism and circadian clocks are interlinked. Calorie restriction (CR) is a feeding paradigm known to extend longevity. We found that CR significantly affected the rhythms in the expression of circadian clock genes in mice on the mRNA and protein levels, suggesting that CR reprograms the clocks both transcriptionally and post-transcriptionally. The effect of CR on gene expr...
متن کاملTuning in to the rhythm of clock genes in skeletal muscle★
Circadian rhythms and metabolic homeostasis are closely entangled biological processes. Clock genes refer to a group of genes which regulate a variety of biological responses through their periodic expression. Genes encoding the core clock mechanism include the positive transcriptional regulators brain and muscle Arnt-like protein-1 (BMAL1) and circadian locomotor output cycles kaput protein (C...
متن کاملRegulation of BMAL1 Protein Stability and Circadian Function by GSK3β-Mediated Phosphorylation
BACKGROUND Circadian rhythms govern a large array of physiological and metabolic functions. To achieve plasticity in circadian regulation, proteins constituting the molecular clock machinery undergo various post-translational modifications (PTMs), which influence their activity and intracellular localization. The core clock protein BMAL1 undergoes several PTMs. Here we report that the Akt-GSK3b...
متن کاملEffects of Lycium barbarum. polysaccharide on type 2 diabetes mellitus rats by regulating biological rhythms
Objective(s): Type 2 diabetes mellitus (T2DM) is associated with circadian disruption. Our previous experimental results have showed that dietary Lycium barbarum. polysaccharide (LBP-4a) exhibited hypoglycemic and improving insulin resistance (IR) activities. This study was to explore the mechanisms of LBP-4a for improving hyperglycemia and IR by regulating biological rhythms in T2DM rats. Mat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016